Impact of constitution of the terthiophene-vinylene conjugated side chain on the optical and photovoltaic properties of two-dimensional polythiophenes.

نویسندگان

  • Chuen-Yo Hsiow
  • Rathinam Raja
  • Chun-Yao Wang
  • Yu-Hsiang Lin
  • Yu-Wen Yang
  • Yen-Ju Hsieh
  • Syang-Peng Rwei
  • Wen-Yen Chiu
  • Ching-I Huang
  • Leeyih Wang
چکیده

The effects of the spatial arrangement of the conjugated side chains of two-dimensional polymers on their optical, electrochemical, molecular-packing, and photovoltaic characteristics were investigated. Accordingly, novel polythiophenes with horizontally (PBTTTV-h) and vertically (PBTTTV-v) grafted terthiophene–vinylene (TTV) conjugated side chains were synthesized that display two and one UV-vis peaks, respectively; the difference is due to the different constitutions of the conjugated side-chains. Because the spatial arrangement affects the molecular self-assembly, PBTTTV-h shows stronger crystallinity than PBTTTV-v, which enhances the charge mobility in devices. Moreover, PBTTTV-h has a lower HOMO energy level (−5.49 eV) than PBTTTV-v (−5.40 eV). Bulk heterojunction solar cells fabricated from PBTTTV-h/PC71BM and PBTTTV-v/PC71BM exhibit power conversion efficiencies of 4.75% and 4.00%, respectively, and Voc values of 800 and 730 mV, respectively, under AM1.5G illumination (100 mW cm(−2)). Thus, the architecture of the TTV conjugated side chains affects the optical, electrochemical, and photovoltaic properties; this study provides more ideas for improving 2-D conjugated polymers for semiconductor devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified structure of two-dimensional polythiophene derivatives by incorporating electron-deficient units into terthiophene-vinylene conjugated side chains and the polymer backbone: synthesis, optoelectronic and self-assembly properties, and photovoltaic application

Molecular engineering on the conjugated side chains of two-dimensional (2D) conjugated polymers was conducted and its effect on the optical, electronic, self-assembly and photovoltaic properties was investigated. A new monomer, M2, was prepared by capping (E)-30-(2-(2,5-dibromothiophen-3-yl)vinyl)4,400-bis(2-ethylhexyl)-2,20:50,200-terthiophene, M1, with two heptanoyl groups, and then coupled w...

متن کامل

Optical Properties of Some Oligothiophene Derivatives: DFT Study

Polythiophenes are of considerable interest as synthetic metals. The optical properties of polythiophenes can be easily affected by alkyl chain or other side groups to the thiophene ring. The effect of polymerization degree on the energy gap was studied in the case of polythiophene as a conjugated polymer at B3LYP/6-31+G(3d,3p) level of theory. Up to n = 16 could be confident that this degree o...

متن کامل

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

Materials Based on Carbazole for Organic Solar Cells Applications. Theoretical Investigations

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 45  شماره 

صفحات  -

تاریخ انتشار 2014